The Institute of Optometry is unique in being an independent self-financing charity dedicated to the promotion of clinical excellence, research, and education in optometry.

Roberson (1989)

KIDS R FUN
The busy optometrist’s guide to paediatric eyecare

Prof Bruce Evans
BSc (Hons) PhD FCOptom DFCIIP DipOrth FAAO FBCLA

Director of Research
Institute of Optometry

Visiting Professor
City University

Visiting Professor
London South Bank University

Private practice
Brentwood, Essex

© 1990-2014 Bruce Evans

References

Vision & Reading Difficulties, www.optometry.co.uk/bookshop

PLAN

INTRODUCTION

OCULAR HEALTH

VISUAL ACUITY

REFRACTION

ORTHOPTIC FUNCTION

CONCLUSIONS

Paediatrics: general approach
- small, inexperienced adults
- put child at ease; have fun; praise
- may need to be quick
- do what you can, where you can, when you can
- dim lights slowly
- explain, in appropriate language
- train them and give prizes

Paediatrics: when to refer
- active & some old pathology
- Fundus photography useful from age 4-5y
- visual conversion reactions can mask pathology
- non-accidental injury

Handout from www.bruce-evans.co.uk
for regular tweets on optometric research

DISCLOSURE
- Paid lectures & KOL/product feedback programmes:
 - Hoya, CibaVision, CooperVision, Johnson & Johnson, Cerenus Visual Technologies, Black & Libran, Sotirana, Specavers
 - Lecture content always my own
- Author of Pickwell's Binocular Vision Anomalies, editions 3-5
- i.O.O. Sales Ltd markets IFS orthoptic exercises, which the speaker designed, and for which he receives a small royalty
- Community optometric practice in Brentwood, Essex

COLE MARTIN TREGASKIS
OPTOMETRISTS

References

Handout from www.bruce-evans.co.uk
for regular tweets on optometric research
Non-accidental injury (NAI)

- Ocular signs
 - Peripheral retinal haemorrhages
 - Periocular bruising
 - Subconjunctival haemorrhages
 - Hyphaema
 - Dislocated lens
 - Retinal detachment
- Systemic signs
 - Surface bruises
 - Multiple fractures & injuries
 - Scalds & burns

Child protection

- Avoid unnecessary physical contact
- To protect yourself against unfounded allegations you may:
 - Ensure presence of parent/carer at all times
 - Door ajar so parent/carer can hear
 - Open access policy: staff knock & enter any time
- But take reasonable precautions to preserve confidentiality

Development of binocular vision

- Occasional (<15% of the time) neonatal misalignments are common and OK in the first month of life and only require referral if
 - they worsen after 2 months or
 - there is an intermittent deviation at 4 months
- For most infants, motor fusion and sensory fusion develop at about 3-4 months
- By 6 months children should converge to a 20Δ base out prism and, if cooperative, should be able to fixate coarse stereoscopic targets

Symptoms, history, family history

- Symptoms:
 - Do you ever see an eye turning?
 - Distance vision (birds, planes)
 - Near vision (detail in pictures)
- History:
 - Birth on time
 - Birth weight
 - Birth complications
- Family history
 - Esotropia, amblyopia, Rx

Ocular health

- With pre-school, optometrist unlikely to get more than a glimpse
- Pupil reactions possibly, indirect can be useful
- If in doubt, dilate. Photos if possible
- If still in doubt, refer
- Colour vision
 - Ishihara
 - TCU (1 & 2)

Handout from www.bruce-evans.co.uk for regular tweets on optometric research
HVID NORMS

- neonate: 9.0-10.5 mm
- 6 months: 11.5 mm ± 0.50 mm

PLAN

INTRODUCTION
OCULAR HEALTH
VISUAL ACUITY
REFRACTION
ORTHOPTIC FUNCTION
CONCLUSIONS

Handout from www.bruce-evans.co.uk for regular tweets on optometric research

Visual acuity: overview

- Macular is poorly developed at birth
- Large variation in rate of development
- Results vary with different test methods
- VEPs are an option
- We need to detect strabismic amblyopia
 - So, do crowded tests as soon as you can

Visual acuity: grating preferential looking

- Teller or Keeler or Lea
- Suitable from birth
- Two out of three
- Easier to do than you think!
- No peeping!
- Not good at detecting strabismic amblyopia
 - Vernier is the future
 - (Drover et al., 2010)

Visual acuity: Cardiff cards

- Vanishing optotypes suitable from 6 months
- Binocular readings possible for 96% aged 12-36 months
 - Adoh and Woodhouse (1994)
- A “game” that children enjoy
- Encourage them (noises etc.)
- Poor at detecting strabismic amblyopia

Visual acuity: shapes and pictures

- Manageable by many 2 year olds
- Avoid isolated uncrowded optotypes
 - Poor at detecting strabismic amblyopia
- Lea & Kay have LogMAR design
- Test Chart 2000 is ideal
- Most children who can do these can match crowded letters
Visual acuity: letter matching

- **Worst:**
 - Sheridan Gardiner
 - Sonksen Silver
 - Cambridge cards
 - Glasgow Acuity Test

- **Better:**
 - Test Chart 2000

- **Best:**
 - Possible from c. 2.5 years

Visual acuity: near charts

- **Lea, Patti pics, Kay near VA cards**
- **Avoid stories**
- **Institute of Optometry near test card**
- **Many others**

Visual acuity: “better than nothing”

- **Reaction to occlusion**
- **10s up one eye**
- **Should alternate freely**

Refraction: Basic minimum

- Are the retinoscopy reflexes symmetrical and no large refractive errors?
- Be adaptable about working distance
- Hold trial lenses with infants
- Fixation target is anything that will attract their attention, ideally Test Chart 2000

Refraction: Mohindra retinoscopy

- Working distance = 55cm
- Totally darkened room
- Occlude one eye
- Fixate retinoscope light
- -1.00 to -1.25D allowance
- High correlation with cycloplegic retinoscopy for over 2 yr-olds

PLAN

INTRODUCTION

OCULAR HEALTH

VISUAL ACUITY

REFRACTION

ORTHOPTIC FUNCTION

CONCLUSIONS

Handout from www.bruce-evans.co.uk for regular tweets on optometric research
Refraction: accommodative lag

- MEM retinoscopy
 - P x binocularly fixes target on retinoscope at normal reading distance
 - Practitioner monocularly rapidly interposes lenses to neutralise reflex
 - Mean +/- 1 SD quoted as plano to +0.75
- Nott retinoscopy
 - UC-CUBE

Refraction: cycloplegic

- Indications for cycloplegic:
 - Symptom of intermittent SOT
 - Sign of SOP or SOT
 - Unexplained poor VA
 - Unexplained symptoms
 - Variable or suspicious Rx
- Refer if under 3 months
 - Under 12 months use 0.5% cyclo
 - Dark pigmentation leave for longer

Refraction: normal development

- At birth +2.00 DS (SD = 2.00 DS)
- Very variable in first year
- On average, hypermetropia decreases rapidly during the first year to a mean level of about +1.50 D at age one year
- High astigmatism in first year often reduces

Refraction: when to prescribe (Leat 2011)

- Nearly 75% of children with esotropia &/or amblyopia have a significant Rx
- Hyperopia
 - Age 1+: ≥3.50D in any meridian (give partial Rx)
 - Age 4+: ≥2.50D in any meridian (give partial Rx; reduce by 1-1.50D)
 - School age: ≥1.50D
- Astigmatism
 - Age 1.5+: ≥1.00DC; give partial up to age 3-4y
 - Age 4+: ≥0.50DC
 - Correct oblique astigmatism ≥0.50DC from 1y onwards
- Anisometropia: prescribe full aniso correction if amblyopia

Myopia control

- Dual focus soft CL slow myopia progression (Anstice & Phillips, 2010)
 - 40 children aged 11-14y, cross-over RCT, 2x 10 month periods, CV MiSight
 - In 70%, myopia progression reduced by 30% or more
- Soft CL to reduce hyperopic defocus works
 - Slow myopia progression by 30-50% (Sankaridurg et al, 2011; Anstice & Phillips, 2011; Lam et al, 2013)
- Bifocal soft CL can slow myopia progression by 60-70% if esphoric at near, at least for 1y
 - (Aller et al., 2006)
- Bifocal soft CL (CD) can slow myopia progression by 50%
 - (Walline et al., 2013)
- Orthokeratology slows myopia progression by 30-50%

Myopia control

- Dual focus soft CL slow myopia progression (Anstice & Phillips, 2010)
 - 40 children aged 11-14y, cross-over RCT, 2x 10 month periods, CV MiSight
 - In 70%, myopia progression reduced by 30% or more
- Soft CL to reduce hyperopic defocus works
 - Slow myopia progression by 30-50% (Sankaridurg et al, 2011; Anstice & Phillips, 2011; Lam et al, 2013)
- Bifocal soft CL can slow myopia progression by 60-70% if esphoric at near, at least for 1y
 - (Aller et al., 2006)
- Bifocal soft CL (CD) can slow myopia progression by 50%
 - (Walline et al., 2013)
- Orthokeratology slows myopia progression by 30-50%

PLAN

- **INTRODUCTION**
- **OCULAR HEALTH**
- **VISUAL ACUITY**
- **REFRACTION**
- **ORTHOPTIC FUNCTION**
- **CONCLUSIONS**

Handout from www.bruce-evans.co.uk for regular tweets on optometric research
Orthoptics: development

- VOR present at full term birth
- Saccades improve over first 2 months
- Pursuit improves over the first 3 months
- Bifoveal fixation occurs at about 2-3 months
- Sensory & motor fusion & stereopsis at 3-4 months
- Accommodation relatively inaccurate, in line with sensory abilities until about 3 months

Orthoptics: tests of alignment

- Cover test: the gold standard
- Hirschberg: inaccurate 1 mm = 15-20 Δ
- Krimsky: ± 14 Δ
- Brückner
 - Symmetry of red reflexes, direct ophthalmoscope at 80-100 cm, dial in correction for clear view. Darker reflex in strabismic eye
 - Detects strabismus, anisometropia, anisocoria or pathology

Orthoptics: motility

- Infants don’t like having head held
 - Move around
 - Or parent can rotate the child

Orthoptics: motor fusion

- Base out prism test
 - Have child fix a detailed picture
 - Can measure in older children with prism bar
 - Measure the reserve that opposes the phoria first

<table>
<thead>
<tr>
<th>age (months)</th>
<th>test</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20 Δ out</td>
<td>unlikely to make any response</td>
</tr>
<tr>
<td>15–18</td>
<td>20–30 Δ out</td>
<td>measure phoria first</td>
</tr>
</tbody>
</table>

Orthoptics: sensory fusion & stereo

- Lang works well with infants; look at eye movements
- Frisby makes a good game with squeaky toy
- Recommended from age 2y is Randot
 - Random dot
 - Contoured
 - Mallett polarised letters test

STEREOTESTS

www.bernell.com
Orthoptics: stereotest norms

- Generally, different tests give different results
- But Titmus circles similar to Randot circles

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>Lang 1</td>
<td>Any unlikely to make any response</td>
</tr>
<tr>
<td>6-18</td>
<td>Lang 1 or 2</td>
<td>Should be able to point and name pictures</td>
</tr>
<tr>
<td>> 24</td>
<td>Lang 1 or 2</td>
<td>Should be able to point and name pictures</td>
</tr>
<tr>
<td>≥ 24</td>
<td>Randot (shapes)</td>
<td>Indicates no strabismus</td>
</tr>
<tr>
<td>≥ 24</td>
<td>Randot (animals)</td>
<td>Should be able to see all animals</td>
</tr>
<tr>
<td>3-5 yrs</td>
<td>Titmus</td>
<td>70"</td>
</tr>
<tr>
<td>> 5 yrs</td>
<td>Titmus</td>
<td>40" or better</td>
</tr>
<tr>
<td>3.5 yrs</td>
<td>Titmus</td>
<td>300" (Romano et al., 1975)</td>
</tr>
<tr>
<td>5 yrs</td>
<td>Titmus</td>
<td>140" (Romano et al., 1975)</td>
</tr>
<tr>
<td>6 yrs</td>
<td>Titmus</td>
<td>80" (Romano et al., 1975)</td>
</tr>
<tr>
<td>7 yrs</td>
<td>Titmus</td>
<td>60" (Romano et al., 1975)</td>
</tr>
<tr>
<td>9 yrs</td>
<td>Titmus</td>
<td>40" (Romano et al., 1975)</td>
</tr>
<tr>
<td>3-5 yrs</td>
<td>Frisby</td>
<td>250"</td>
</tr>
<tr>
<td>3-5 yrs</td>
<td>TNO</td>
<td>120"</td>
</tr>
</tbody>
</table>

Orthoptics: summary

- Try to do more than one method
- Record quality of response

Strabismus: the bottom line for the busy optometrist

- Is it new or changing?
 - Yes
 - Any treatment needed? (probably not)
 - No
 - Any treatment needed? (probably not)

KEY SIGNS OF DECOMP. PHORIA

- Symptoms
- Poor cover test recovery

KEY SIGNS OF DECOMP. PHORIA

- Symptoms
- Poor cover test recovery
- Aligning prism (FD test)
- Low fusional reserve opposing phoria
 - Sheard's criterion
 - Particularly useful for exophorias
- For esophorias, size and imbalanced fusional reserves are relevant
- For hyperphorias, size matters
Profound learning difficulties

- e.g., Downs syndrome
- often associated with:
 - refractive error
 - strabismus
 - poor accommodation
 - reduced VA
- paediatric techniques may work; be quick
- need eyecare, often need Rx (bilocals)

Specific learning difficulties (SpLD) e.g., dyslexia

- vision is not main cause, BUT:
 - can have refractive error
 - often have subtle orthoptic anomaly
 - may benefit from coloured filters
 - SpLD need specialist (non-NHS) eyecare

Common visual problems in dyslexia

- Meares-Irlen Syndrome/ Visual Stress (MISVIS)
- Binocular instability
- Accommodative insufficiency

Conclusions: they need us

- Young children need and deserve more than once only vision screening on school entry
- Many subtle orthoptic anomalies can be best managed in primary optometric care
- Accept that you won’t get perfect results
 - Record the quality of the response

Conclusions: we need them

- c. 10% of population is under 16 yrs
- children need regular brief exams
- some orthoptic patients prefer exercises in primary care
- specialist care for SpLD
A personal perspective: Dr Optometry

- In 2008 the Institute of Optometry launched a Doctor of Optometry degree in collaboration with London South Bank University
- 5 year part-time professional doctorate
 - Year 1 has 13 taught days & 2 assignments
 - Year 2 has 8 taught days & 2 assignments
 - Years 3-5 are supervised doctoral research
 - Research most likely to be clinical, in practice
- “the ultimate HQ for UK optometrists”