Digital eyestrain (DES)/Computer vision syndrome (CVS): a new problem or a conglomerate of old problems?

Prof Bruce Evans
BSc PhD FCOptom FAAO FEAOO FBCLA DipCLP DipOrth
Director of Research Institute of Optometry
Visiting Professor City, University of London
Visiting Professor London South Bank University
Private practice Cole Martin Tregaskis, Brentwood, Essex
© 1990-2018 Bruce Evans

PLAN
INTRODUCTION
CVS – NEW CONGLOMERATE OF OLD PROBLEMS
BINOCULAR & ACCOMMODATIVE CHALLENGES
VISUAL STRESS
SPECIFIC CHALLENGES WITH DISPLAYS
CONCLUSIONS

Full handout of slides from www.bruce-evans.co.uk

For regular tweets on optometric research:

CAVEAT

Case study:
Px in early 20s: headaches with computer use
Saw 4 optoms, 7 physicians, 1 neurologist
5y later acute angle-closure glaucoma, blind LE; cl aimed 5y
chronic intermittent sub-acute angle-closure glaucoma
Patient sued all healthcare practitioners

DES is a diagnosis of exclusion
diagnosis by optom/ophthalmologist
Neuro-optometric checks
Pupils, discs, fields, strabismus, comitancy, accommodation
Check these things regularly

Definition of DES (CVS)
"ocular complaints as a result of looking at a computer monitor"
Blehm et al (2005)
"combination of eye & vision problems associated with the use of computers"
Rosenfield (2011) from AOA
"collection of visual, ocular and musculoskeletal (neck and shoulder pain) symptoms that result from prolonged computer use"
Gowrisankaran & Sheedy (2015) from AOA

Classification of DES
Blehm et al (2005)
Rosenfield (2011)
Portello et al (2012)

Ref: Portello et al (2012): Dry eye & Accommodation
Refractive error
Accommodation
Convergence
Dry eye
Perimeter
Visual stress
Specific challenges
Environmental
Other factors
Is all asthenopia the same?

- 20 young adults with good vision
- Rated symptoms after:
 - Mixed astigmatism, close viewing distance, lens flipper, dry eyes, lens flaring light (15Hz)
 - "at least 2 different afferent pathways for the symptoms of asthenopia"
- ESF: burning, irritation, tearing, and dryness
- ISF: ache, strain, and headache located behind the eyes
- From: close viewing distance, lens flipper, and mixed astigmatism
 - "Accommodative/binocular stress"

The good old days (Duke-Elder, 1970)

- Duke-Elder (1970) on causes of eye-strain
 - Environmental factors:
 - illumination (quantity, quality, distribution)
 - Ocular factors:
 - presbyopia, astigmatism, heterophoria, convergence, accomodation, vitreous humor, lens (film)
 - Stress environment affect faculties, lower rate cause eye-strain through damage (p<0.0001 vs 1970s)
- Constitutional factors:
 - optic, neurotic, emotional strain
 - Other factors: constitutional factors
 - Symptoms:
 - eyes tired, hot, uncomfortable, watery, prone to infections
 - Actual strain developing to pain
 - Ref: accommodative headache, vertigo, digestive
 - "Headache is the commonest symptom associated with eye-strain"… "Causes itself almost every possible variety"}

DES case study

- 52 year old design engineer
- Clinical findings:
 - V (LogMAR): R 0.1 L 0.0 B -0.06
 - Subjective: R 0.50 L -0.25 Add: @38cm +1.75 @57cm +1.00
 - Other findings normal except
 - MC: 1.5 cm and N cover test 8 A V good recovery
- Visual requirements in different eras:
 - 1970s: SV NV spectacles & prism/VT
 - 1990s: IV/NV bifocals & CI exercises
 - 2017: no spectacles & no symptoms

Are computers the latest thing to be blamed for asthenopia?

Is the office a problem?

- Kim et al (2017) sought relationship between occupational noise/vibration exposure and headache/eye-strain
 - Survey of 25,000 Korean workers
 - N.B., not North Korea where tractors used differently
 - 24% of those with severe noise had headache/eye-strain of 17% of those with no noise (p<0.0001)
 - 23% of office workers had headache/eye-strain of 17% of manual workers (p<0.0001)
DSE reading of hard copy

- More incomplete blinks with DSE
 - Bruni et al. (2013)
 - Chu et al. (2015)
 - Arfam et al. (2015)
- More symptoms with DSE
 - Chu et al. (2015)
- Slower with DSE
 - Hue et al. (2014)
- Differences between different displays
 - Hue et al. (2014)
- For some, symptoms with DSE reduced by coloured filters
 - Rosenfeld et al. (2015)

Ocular motility problems

- Incomitancies are rare but A & V syndromes are common
- Workstation should avoid the px looking in problematic directions of gaze
 - Could potentially lead to decompensation
- Detect incomitancies
- Advice on workstation setup

Conclusions

For regular updates on optometric research.

Full handout of slides from www.bruce-evans.co.uk

Treatment of decompensated heterophoria & binocular instability

- Refractive correction/modification
 - Under-used & easy to prescribe with naturalistic PD test
 - Esophoria can be corrected by vocational lens (e.g., SYNC III)
- Prisms
 - Probably under-used
 - Simple to prescribe with naturalistic PD test or EyeGenius
- Eye exercises
 - Can be successful for motivated patients

Accommodative fatigue in computer users

- Debate over whether accommodation:
 - Fatigue (Tingay & Chung, 2011)
 - Does not fatigue (Windsor, 1993; Evans, 1997)
- Clinical experience is that many users of digital devices are helped by accommodative support
- Manufacturers are developing innovative solutions
 - e.g., Hoya Sync III: available in 3 boost powers
Meares-Irlen Syndrome/Sensory Visual Stress

PREVALENCE: 720% of people with dyslexia favor of the general population

ETIOLOGY: cortical hyperexcitability causing pattern glare from text/flicker

SYMPTOMS: asthenopia, headache, perceptual distortions (visual m/n)

SIGNS: coloured filters alleviate symptoms and improve rate of reading

TREATMENT: coloured background or lenses

Children may be more at risk

- More prone to visual stress
- Poor classroom design
- Video gaming
- Pattern glare from window blinds
- Flicker
- Dry eye symptoms & signs improve when cease smartphones

Additional considerations

- Neurological basis for visual discomfort
- Pattern glare
- Fluorescent lights
- Can achieve very high contrast
- Pattern glare from window blinds
- Might be wrong position
- Can be too bright
- Can achieve very high contrast
- Can have unnatural colour contrast

PLAN

INTRODUCTION

CVS – NEW CONGLOMERATE OF OLD PROBLEMS

BINOCULAR & ACCOMMODATIVE CHALLENGES

VISUAL STRESS

SPECIFIC CHALLENGES WITH DISPLAYS

CONCLUSIONS

Specific problems with displays

- Maybe in wrong position
- Can flicker
- Possibility of stereoscopic interaction with fluorescent lights
- Can be too bright
- Can achieve very high contrast
- Can have unnatural colour contrast

Meares-Irlen Syndrome/Sensory Visual Stress

PREVALENCE: 720% of people with dyslexia favor of the general population

ETIOLOGY: cortical hyperexcitability causing pattern glare from text/flicker

SYMPTOMS: asthenopia, headache, perceptual distortions (visual m/n)

SIGNS: coloured filters alleviate symptoms and improve rate of reading

TREATMENT: coloured background or lenses

Children may be more at risk

- More prone to visual stress
- Poor classroom design
- Video gaming
- Pattern glare from window blinds
- Flicker
- Dry eye symptoms & signs improve when cease smartphones

Additional considerations

- Neurological basis for visual discomfort
- Pattern glare
- Fluorescent lights
- Can achieve very high contrast
- Pattern glare from window blinds
- Might be wrong position
- Can be too bright
- Can achieve very high contrast
- Can have unnatural colour contrast

Specific problems with displays

- Maybe in wrong position
- Can flicker
- Possibility of stereoscopic interaction with fluorescent lights
- Can be too bright
- Can achieve very high contrast
- Can have unnatural colour contrast
3-D displays
- 3-D displays dissociate convergence & accommodation.
- Loss of spatial resolution may help OR
- Loss of temporal resolution.
- Could this be helped by enhanced depth vision?
- Increased depth of accommodation.
- People with mild BV problems have more symptoms & worse performance with 3-D displays.
- More if they found it uncomfortable.
- 48% find 3-D TV uncomfortable & 64% would watch more if they found it comfortable, (Van, Milan, 2011)

Initial effects of 3-D displays
- 39 normal adults (excluding BV exacerberated)
 - eye symptoms, WMF assessed before/after 2-D or 3-D
- 3-D displays associated with:
 - increased blink rate
 - slower reading
 - decreased vergence/fusion reserves
 - decreased accommodative reserve
 - 3 participants showed marked decrease in fusional reserves and 3x increased symptoms

PLAN
INTRODUCTION
CVS – NEW CONGLOMERATE OF OLD PROBLEMS
BINOCULAR & ACCOMMODATIVE CHALLENGES
VISUAL STRESS
SPECIFIC CHALLENGES WITH DISPLAYS
CONCLUSIONS

CONCLUSIONS
- Like any tool, computers can be used to good or to bad effect
- Asthenopia is the problem, not computers
- Find out about your patient's workstation
- Detect & manage refractive error, BV/accommodative problems, & dry eye
- Abnormal eyes are likely to have problems
- Normal eyes may have problems in abnormal situations (e.g., 3-D displays)
- Flicker can be a problem even when not consciously noticed
- Sensory visual stress from cortical hyperexcitability can cause symptoms sometimes blamed on BV/accommodative anomalies & vice-versa

Handout from www.bruce-evans.co.uk for regular tweets on optometric research.
Adapting your eye exam routine to the digital age

Prof Bruce Evans
BSc PhD FClinOpt FICOptom FBSLA COPCLIP DiplClinOpt
Director of Research
Institute of Optometry
Visiting Professor
City University of London
Visiting Professor
London South Bank University
Private practice
Cole Martin Tregaskis, Brentwood, Essex
© 2017-2018 Bruce Evans

PLAN

INTRODUCTION
SYMPTOMS & HISTORY
REFRACTION
ACCOMMODATION TESTING
BINOCULAR VISION TESTING
PATIENT MANAGEMENT
CONCLUSIONS

Full handout of slides from www.bruce-evans.co.uk

For regular tweets on optometric research: @BruceEvans

Vocation, history, symptoms

- Workplace factors:
 - Needs to be more detailed than most clinical record systems suggest!
 - The only general rule about working distance is that there is no general rule
 - What do they do & where do they do it?
 - You measure, or if engineer, they measure!
 - How feasible is it to adjust workstation?
Vocation, history, symptoms

- **History:**
 - Extrinsic muscle palsies

- **Symptoms:**
 - New or old?
 - Does symptom onset relate to any changes at work?
 - E.g., new desk, office, lighting, PC?
 - Related to task?
 - Internal or external?
 - But, symptom specificity a year

PLAN

INTRODUCTION

SYMPTOMS & HISTORY

REFRACTION

ACCOMMODATION TESTING

BINOUCULAR VISION TESTING

PATIENT MANAGEMENT

CONCLUSIONS

Full handout of slides from www.bruce-evans.co.uk

Non-tolerances: conclusions

- Over 80% of non-tols are presbyopes
- [Don't over plus or under-minus]
- Partially prescribe
- Demonstrate the change
- Warn about adaptation
- Consider non-tols as an opportunity by excelling at dealing with these challenging patients

Visual acuity reserve (VAR)

- Conventional view is that acuity reserve (VAR) needs to be 2-3x for fluent to maximum reading (Lovie-Kitchin & Whittaker, 1999)
- Ko et.al. (2014) argued 2x reserve is appropriate for computer users
- Data with digital devices indicates VAR 6x for optimal reading
- Warns: more closer to monitor when glare present
- When individuals can freely adjust their posture & chair, they also select a viewing distance that maximizes the visual angle of font used (20-23 arcmin) (Lovie-Kitchin & Whittaker, 1999)
- Larger font improves productivity
- Applied to younger participants as much as older

Refraction

- Obtain refraction for all the relevant distances
- Prompt use Rx, but with very sensitive patients Rx trial & trial
- Rosenfield (2010) noted 0.50-1.00DC can increase symptoms in computer use
- Is a compromise Rx (same Rx for more than 1 distance) feasible?
- Depends on:
 - Age/accommodation
 - What is the difference between distances required?
 - Pupil size
 - Patient tolerance
 - Time at task
 - Use of screen
 - Prescription
 - Cannot apply simple rules for determining Add
 - Need to calibrate

Case study (13035)

- 73 year old male, average pupils (not small)
- Symptoms: "Cannot see engineering workbench & food preparation with current N glasses too strong"
- Distances estimated:
 - Reading breaks: 45cm
 - VDU: 50cm
 - Workbench & food: 90cm
 - Rx: R=+1.00/-1.00x107.5 6/7.5 L=+1.25/-0.75x80 6/6
 - Reading breaks: 45cm Add+2.5
 - VDU: 50cm Add+1.5
 - Workbench: 90cm Add+0.75
 - Current glasses: Add
 - Distance (no change)
 - VDU (add 10° top, NI at bottom): no change
 - Reading (add+2.5)
 - Solution: new glasses Add+0.75; discuss safety requirements

Over 80% of non-tols are presbyopes

Don't over-plus or under-minus

Demonstrate the change

Warn about adaptation

Consider non-tols as an opportunity by excelling at dealing with these challenging patients

Conventional view is that acuity reserve (VAR) needs to be 2-3x for fluent to maximum reading (Lovie-Kitchin & Whittaker, 1999)

Ko et.al. (2014) argued 2x reserve is appropriate for computer users

Data with digital devices indicates VAR 6x for optimal reading (Ko et al., 2014)

Users move closer to monitor when glare present

Larger font improves productivity

Applied to younger participants as much as older

Obtain refraction for all the relevant distances

Prompt use Rx, but with very sensitive patients Rx trial & trial

Rosenfield (2010) noted 0.50-1.00DC can increase symptoms in computer use

Is a compromise Rx (same Rx for more than 1 distance) feasible?

Depends on:

- Age/accommodation
- What is the difference between distances required?
- Pupil size
- Patient tolerance
- Time at task
- Use of screen
- Prescription
- Cannot apply simple rules for determining Add
- Need to calibrate

73 year old male, average pupils (not small)

Symptoms: "Cannot see engineering workbench & food preparation with current N glasses too strong"

Distances estimated:

- Reading breaks: 45cm
- VDU: 50cm
- Workbench & food: 90cm
- Rx: R=+1.00/-1.00x107.5 6/7.5 L=+1.25/-0.75x80 6/6
- Reading breaks: 45cm Add+2.5
- VDU: 50cm Add+1.5
- Workbench: 90cm Add+0.75
- Current glasses: Add
- Distance (no change)
- VDU (add 10° top, NI at bottom): no change
- Reading (add+2.5)
- Solution: new glasses Add+0.75; discuss safety requirements
Accommodative anomalies

- Accommodative paralysis
- Accommodative insufficiency
- Accommodative fatigue
- Accommodative infacility (inertia)
- Accommodative spasm (excess)

Accommodative fatigue

- Accommodative fatigue: accommodation cannot be sustained for long periods of near vision
- A reduction in the amplitude of accommodation with repeat testing
- May be a milder form of accommodative insufficiency

Amplitude accommodative testing

- Best practice is to test accommodation amplitude in pre-presbyopes... **BUT**
- Measurement of AoA with ruler is prone to 15+ sources of errors
- Rule: Evans, A. (Diploena in Practice, 2014)
- E.g., amplitude of accommodation can vary significantly with gaze angle
 (Rosenfield, 2017)
- Still best to determine the add subjectively at the relevant distance

Accommodation in reserve (Millodot & Millodot, 1989)

- Determined Add subjectively & related to accommodation available
- % of accommodation used for a comfortable reading varies with distance:
 - At 20cm one third of accommodation in reserve
 - At 20cm half of accommodation in reserve
 - Risk very large inter-subject variation
- Conclusions:
 - The total half of accommodation in reserve (1/2) and the accommodative amplitude at distance of 1000 cm are relevant.
 - The accommodative amplitude at distance of 1000 cm is relevant
 - Relevance to DES: determine the Add subjectively at the relevant distance.

Accommodative inertia (infacility)

- Accommodation responds slowly
- Can test with flippers
 - Count cycles per minute
 - A flip from plus to minus is ½ a cycle
- Dynamic assessment of accommodative system
- Norms – age dependent
- Ideally, with suppression check
- Several confounding variables, ideally, use a control condition

More natural to test with Hart chart or similar.
Motility test

- Use reliable pen torch
- Check nose not occluding
- Really, three tests, so do three times:
 1. Observe corneal reflexes
 2. Cover test in peripheral gaze
 3. Ask about diplopia
- Beware of reports of diplopia
 - May break down (in view of target, distance, fus. res.)
 - May be variable
 - May be confused
- Know the muscle actions (RADSIN)

Actions of Superior Muscles

<table>
<thead>
<tr>
<th>Superior Muscles</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectus Medialis</td>
<td>Right</td>
</tr>
<tr>
<td>Rectus Lateralis</td>
<td>Left</td>
</tr>
<tr>
<td>Superior Oblique</td>
<td>Both</td>
</tr>
</tbody>
</table>

Lindblom’s Method

- 70cm rod at 1m, or double Maddox rods (+10° one SO)
- Where there is maximum diplopia, are the two images parallel or
torsional? parallel: RSR, RIR, LSR, LIR torsional: RSO, RIO, LSO, LIO

1. Where is the vertical diplopia greatest?
 - upgaze: RSR, LSR
downgaze: RIR, LIR

2. Does the separation increase on R or L gaze?
 - R: RSR, RIR
 - L: LSR, LIR

Conclusion: Paretic Muscle(s):

Lindblom, Westheimer, Hoyt (1997)
LINDBLOM’S METHOD

If crossed: (+) does the tilt angle increase in upward gaze or downward?
- If torsional:
 1. Does the illusion of tilt increase in upgaze or downgaze?
 - Upgaze: RSO, LSO
 - Downgaze: RIO, LIO
 2. Does the intersection of the rods point to the R (or L) or is it crossed?
 - R: RSO, RIO
 - L: LSO, LIO
 3. If crossed, (+) does the tilt angle increase in upward gaze or downward?
 - Upgaze: bilateral SO patients (very unlikely)
 - Downgaze: bilateral SO patients

Common incomitancies seen in optometric practice

- Superior oblique palsy
- Duane’s syndrome
- Lateral rectus palsy
- Brown’s syndrome

- Become familiar with what these look like:
 - CD in Pickwell’s Binocular Vision Anomalies, 5th edition
 - NB: all these are rare compared with “pattern strabismus” (e.g., A-syndrome, V-syndrome, etc)

SO palsy

- Usually:
 - Hyper-deviation of affected eye, worse in down-gaze
 - Underaction of affected eye when looking down and in
 - More likely to have symptoms with reading than with distance

- But, may have secondary sequelae
- Avoid fitting multifocal spectacles or monovision

Incomitancies: conclusions

- Some incomitancies are difficult to detect
 - If symptoms are suspicious, do cover testing in peripheral gaze
 - Testing for cyclo-deviations detects SO palsies
 - Refer new or changing incomitancies
 - In some long-standing cases, prescribing the prism indicated by the Mallld unit may help
 - Consider effect of incomitancy on workstation
 - Test binocular alignment and compensation under conditions replicating the habitual working conditions (Rosenfield, 2016)

Pattern strabismus/phoria

- V-syndrome: converge more than 15Δ from upgaze to downgaze
- A-syndrome: diverge more than 15Δ from upgaze to downgaze
- About 1 in 5 patients with strabismus may have an A- or V-pattern (Biglan, 1999)
- Also common in people with heterophoria
- Other patterns exist
 - https://www.avidtesting.net/ernt_fishman/vy- syndromes-diagramimage-1552773

- Important to detect “patterns” and advise on placement of monitor, tablet device, etc
- NB also relevant for other conditions that are gaze dependent (e.g., nystagmus)

KEY SIGNS OF DECOMP. PHORIA

- Symptoms
 - Poor cover test recovery
 - Aligning prism (FD test)
 - Low fusional reserve opposing phoria
 - Sheard’s criterion
 - Particularly useful for exophorias
 - For esophorias, size and imbalanced fusional reserves are relevant
 - For hyperphorias, size matters
ALIGNING PRISM: Mallett Unit

• Aligning prisms/spheres to eliminate FD
• Good foveal and peripheral fusion lock

Question set is important
• Ask if a line ever moves
 - Jenkins & Evans (2006)
• For symptomatic phoria:
 • Sensitivity 75%
 • Specificity 78%
 - Jenkins, Pickwell, & Yekta (1989)

Alignment of prisms
- Test in habitual gaze
- Prism dioptre steps: 0.5, 1.0, 2.0, 4.0
- Re-normalise BV between prisms
- Minimum prism for alignment
- Use hand held loose prisms
- Increase lighting, full field of view

Patient management
• Maintain normal binocular vision

PLANNING

INTRODUCTION
SYMPTOMS & HISTORY
REFRACTION
ACCOMMODATION TESTING
BINOCULAR VISION TESTING
PATIENT MANAGEMENT
CONCLUSIONS

Full handout of slides from www.bruce-evans.co.uk

For regular tweets on optometric research:
Follow @BruceRMBvans

Keeping your patient for life
- Customised care is the secret to patient retention
- The handover from optometrist to optician is crucial for the patient & the practice
 - Good approaches to handover:
 • Optometrist does eye exam & dispensing
 • Optometrist calls optician into consulting room, ideally before final management discussion
 • Optometrist takes patient to optician and reviews management discussion
 - Bad approaches to handover:
 • “Go and see the optician”
 • Leave notes for optician to pick up
 • Worst outcome is patient has dispensing elsewhere
- Not in the interest of the patient or the practice
- Best avoided by integrated pathways from eyecare to eyewear

Patient management
• Discuss the options, including pros & cons
• Presbyopes:
 • PAL
 • Vodocal
 • Single vision
 • CL
• Pre-presbyopes:
 • Single vision
 • Accommodative support (e.g., Sync III)
 • CL
• Phoropter is good for initial determination of add, but
 - In the consulting room, simulate patient’s working conditions and let the patient check your proposed fit with actual frames

Full handout of slides from www.bruce-evans.co.uk

For regular tweets on optometric research:
Follow @BruceRMBvans

PLAN

INTRODUCTION
SYMPTOMS & HISTORY
REFRACTION
ACCOMMODATION TESTING
BINOCULAR VISION TESTING
PATIENT MANAGEMENT
CONCLUSIONS

Full handout of slides from www.bruce-evans.co.uk
Additional points

- Dry eye workup also important
- Computers don’t affect blink rate, but increase proportion of incomplete blinks (Chu et al., 2014)
- UK perspective sceptical about blue light blocking for computer users
 - Sunlight exceeds typical levels of artificial lighting by a factor of 10 times or more (Chu et al., 2015)
 - The amount of short-wavelength radiation emitted from digital screens far smaller than from most artificial light sources (Rosenfield, 2016)
 - Blue filtering lenses “have very little effect on incident light/energy” (Dickinson, 2017)
- Lack of high quality evidence (Lawrenson & Hull, 2017)
- “Attenuation of short wavelength blue-violet for everyday wear clear lenses seems a sensible development” (Marshall, 2017)

Conclusions

- Every patient is unique, and this has never been truer than in the digital age
- The best way to help your patient is to customise your eye exam to their needs
- Dispensing also needs to be customised to each patient’s needs
- Handover from optometrist to optician is essential
- A patient with complex visual demands who is well-managed will be a patient for life