Delphi stage 1
symptoms, conventional optometry,
pattern glare

Prof Bruce Evans
BSc (Hons) PhD FCOptom FAAO FEAOO FBCLA DipCLP DipOrth
Director of Research Institute of Optometry
Visiting Professor City University
Visiting Professor London South Bank University
Private practice Brentwood, Essex

PLAN

| Introduction | Symptoms | Basic optometry | Binocular vision | Accommodation | Pattern glare |

Based on published literature, it seems unlikely that a questionnaire alone can be used to reliably detect visual problems (Evans et al., 1993; Hollis & Allen, 2006)
Based on published literature, it seems unlikely that a questionnaire alone can be used to reliably detect visual problems (Evans et al., 1993; Hollis & Allen, 2006).

Pathology & refractive errors
- Serious pathology is rare & is not correlated with reading difficulty (RD)...BUT
- Reading difficulties, headaches, and perceptual distortions are all soft neurological signs
 - Ranges, will result from pathology
- Similarly, refractive errors are not especially common in RD, but can be present in any child
- So, any child who struggles at school should see an optometrist

Case study G5781
- 08-02: 29 yr old female adult student, referred by EP
 - Words blur & jump when tired, skips words, sore eyes with VDU
 - Ocular motor balance, pupils, ophthalmoscopy, fields all OK
 - Refraction: R=L=-0.25/-3.25x180=6/9

BINOCULAR INSTABILITY: DIFFERENTIAL DIAGNOSIS

<table>
<thead>
<tr>
<th>SYM</th>
<th>BINOCULAR INSTABILITY</th>
<th>DECOMP. PHORIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>phoria</td>
<td>may/may not be present</td>
<td>must be present</td>
</tr>
<tr>
<td>variableity of phoria</td>
<td>≥1.75x</td>
<td>>1.75x</td>
</tr>
<tr>
<td>cover test recovery</td>
<td>may/may not be abnormal</td>
<td>usually slow & hesitant</td>
</tr>
<tr>
<td>ocular reserves</td>
<td>convergent & divergent disparity</td>
<td>low reserve opposing phoria</td>
</tr>
<tr>
<td>visual acuity</td>
<td>unstable FD, may be aligned</td>
<td>unaligned may not be unstable</td>
</tr>
<tr>
<td>alignment prism</td>
<td>unstable FD, may be aligned “on average”</td>
<td>may/may not be unstable</td>
</tr>
<tr>
<td>cover test</td>
<td>significant constant</td>
<td>insignificant constant</td>
</tr>
</tbody>
</table>
DISSOCIATED HETEROPHORIA

fusional reserves → motor fusion → sensory fusion → fusion lock

COMPENSATED or NOT COMPENSATED or BINOCULAR INSTABILITY

ALIGNING PRISM: Mallett Unit

- aligning prisms/spheres to eliminate FD
- good foveal and peripheral fusion lock
- question set is important
 - Karania & Evans (2006)
- for symptomatic phoria:
 - sensitivity 75%
 - specificity 78%

ALIGNING PRISM: Mallett Unit

- Maintain normal binocular vision
 - Increase lighting, full field of view
 - Use hand held loose prisms
 - Minimum prism for alignment
 - Re-normalise BV between prisms
 - Prism dioptrre steps: 0.5, 1.0, 2.0, 4.0

KEY SIGNS OF DECOMP. PHORIA

- Poor cover test recovery
- Aligning prism
- Low fusional reserve opposing phoria
 - Sheard’s criterion
 - Particularly useful for exophorias
- For esophorias, size and imbalanced fusional reserves are relevant
- For hyperphorias, size matters

FUSIONAL RESERVES

- Can be measured with:
 - loose prisms
 - prism bar
 - rotary prisms
KEY SIGNS OF DECOMP. PHORIA
- Poor cover test recovery
- Aligning prism
- Low fusional reserve opposing phoria
- Sheard’s criterion
- Particularly useful for exophorias
- For esophorias, size and imbalanced fusional reserves are relevant
- For hyperphorias, size matters

SUMMARY: diagnosis of binocular instability & decompensated heterophoria
- Sheard’s criterion
 - Particularly useful for exophorias
 - For esophorias, size and imbalanced fusional reserves are relevant
 - For hyperphorias, size matters
- For hyperphorias, size matters

SUMMARY: diagnosis of binocular instability & decompensated heterophoria
- Sheard’s criterion
 - Particularly useful for exophorias
 - For esophorias, size and imbalanced fusional reserves are relevant
 - For hyperphorias, size matters

MOTOR DEVIATION:
REFRACTIVE CORRECTION:
- Mandatory in accommodative esotropia
- Also possible to treat convergence excess with multifocals & exo-deviations with negative lenses
- Limited by 4 factors
 - Angle of deviation
 - Refractive error
 - Accommodation
 - AC/A ratio

MOTOR DEVIATION:
REFRACTIVE CORRECTION:
- Determine sphere that
 - Eliminates strabismus (no diplopia)
 - Eliminates FO on Mallett Unit
- Prescribe, try to reduce approx. every 3-6/12
- Negative adds (Chen et al., 2016) and bifocals/varifocals can work well

MOTOR DEVIATION:
REFRACTIVE CORRECTION:
- Myths
 - Negative adds might cause myopia
 - Overminus lenses do not induce clinically significant myopic changes (Rutstein et al., 1989; Paula et al., 2009)
 - Patient likely to adapt to the over-correction
 - If abnormal BV, tend not to adapt (North & Henson, 1985)
 - Bifocals might reduce children’s ability to accommodate
 - Smooth muscle: 14D-3D=11D
 - BF don’t reduce amplitude of accommodation (Fresina et al., 2010)
 - Accommodative (hyperopic) esotropia will not need glasses in later life

MOTOR DEVIATION:
REFRACTIVE CORRECTION:
- Case study: D1542
 - 11/5/96, female, age 8y, 1 headache a fortnight
 - Wearing full cycle plus (c. +2.00, R=L)
 - Cover test: D: 8a SOP N: 10a RSOT
 - With +2.00 add: N 4a RSOT
 - With +2.50 add: N ortho

MOTOR DEVIATION:
REFRACTIVE CORRECTION:
- Case study: D1542
 - 11/5/96, female, age 8y, 1 headache a fortnight
 - Wearing full cycle plus (c. +2.00, R=L)
 - Cover test: D: 8a SOP N: 10a RSOT
 - With +2.00 add: N 4a RSOT
 - With +2.50 add: N ortho
MOTOR DEVIATION:
PRISMATIC CORRECTION: OVERVIEW

• preferred treatment in small/moderate vertical deviations
• may also help in small/moderate horizontal deviations if not amenable to refractive modification or exercises
• limited by angle of deviation / cosmesis of prism

MOTOR DEVIATION:
PRISMATIC CORRECTION: SPECIFICS

• determine prism that
 – eliminates strabismus (no diplopia)
 – eliminates FD on Mallett Unit

MOTOR DEVIATION:
PRISMATIC CORRECTION: MYTH

• patient might "eat up prisms"
• prism adaptation usually abnormal in orthoptic anomalies (North & Henson, 1981)
• exceptions can occur
 – e.g., myopes with decompensated esophoria
 – MKH Polatest method criticized for leading to "excessive amounts of prisms" (Lang, 1994)

MOTOR DEVIATION:
PRISMATIC CORRECTION: CASE STUDY: F6123

• 8/4/97, male, age 6y, ? dyslexia
 – symptoms: words move, sore and tired eyes
 – motility full, +0.50DS BE, cover test ortho., D=N, NPC=nose
 – Dissoc. tests: D: 3 △ SOP , 2 △ L/R N: 3 △ XOP, 3 △ L/R
 – Align. prism: D: LE supp. N: 1 △ in, 1 △ up R
 – Rx: plano, 1 △ up R
• 5/7/97
 – symptoms: with Rx no eyes hurting, D & N clearer
 – no slip with glasses, other findings as above

MOTOR DEVIATION:
FUSIONAL RESERVE EXERCISES:
OVERVIEW

• preferred treatment in small/moderate horizontal deviations, if px co-operative
 – Work well in those aged 11-19y, even if strabismic (Pickwell & Jenkins, 1982)
• in eso-deviations improve ability to converge
• in eso-deviations improve ability to diverge
• try to assess progress using a method different to the treatment technique
• there is some supporting evidence from RCTs
 – Cliftreda & Tannen (1956)
 – Scheiman & Gelazda (2011)

MOTOR DEVIATION:
FUSIONAL RESERVE EXERCISES:
SPECIFICS

• haploscopic instruments / anaglyphs / vectograms / free-space methods
 – feedback helps, as in computer-orthoptics
 – varying targets & conditions helps
 – a key factor is practitioner & patient enthusiasm
 – better to train convergence & accommodation separately rather than together
 – (Horwood & Toor, 2014)
• with a PC & printer anyone can design their own exercises

It was over. But the way the townsfolk called it, neither man was a winner.
CONVERGENCE INSUFFICIENCY: SPECIFICS

- Treatments (in order of increasing complexity)
 - simple push-up (bead on string if very remote)
 - jump convergence
 - push-up with physiological diplopia
 - jump convergence with physiological diplopia
 - free-space stereograms

- RCT shows intensive programme of exercises better than home push-up
 15min a day + 60min weekly > 15min a day

- "Whether synoptophore or jump vergence stereocards are used...the critical variable is the length of time it is maintained" Vinger (1979)

- "Convergence exercises independent of accommodation were the most effective treatment" Horwood & Toor (2014)

BEAD-ON-STRING EXERCISES

- Patient holds card, C, close to nose
- Bead, B, is on string tied to card
- Patient fixates bead, sees card in crossed physiological diplopia

- String appears as X
 - In suppression, part of X is missing

- This approach does not exercise relative accommodation or relative convergence

FUSIONAL RESERVE EXERCISES: COMPUTER ORTHOPTICS

APERTURE RULE TRAINER

- Simple aperture to train convergent reserves
- Double aperture to train divergent reserves

PHYSIOLOGICAL DIPLOPIA

- Patient looks at A
 - B is seen in crossed physiological diplopia
- Patient looks at B
 - A is seen in uncrossed physiological diplopia
PHYSIOLOGICAL DIPLOPIA

- Cats at arms length: patient fixates pencil
- Pencil position adjusted until middle two cats fused
- Patient asked to see cats clearly: exerting negative relative accommodation

DEVELOPMENT OF IFS: Primary goal

- To maintain the patient in an over-converged posture for 10-20 mins a day without them becoming bored
- To provide a variety of stimuli to help any benefit translate into everyday life
- Declaration of interest

IFS EXERCISES: USES

- IFS exercises can be used to treat:
 - decompressed exophoria at near
 - binocular instability
 - convergence insufficiency
 - intermittent exotropia at near
- experienced practitioners can also use the exercises to treat constant comitant exotropia at near, usually as part of a more detailed treatment regimen.

DEVELOPMENT OF IFS: Card 1

- Teaches physiological diplopia & introduces 3-D perception

DEVELOPMENT OF IFS: Card 2

- Builds fusional reserves (step & ramp)
- Controls for & treats suppression

DEVELOPMENT OF IFS: Card 3

- Builds fusional reserves
- Controls for suppression
- Card 4 similar, but different autostereogram
OPEN TRIAL: Fusional reserves & NPC (N=20)
- Divergent reserves (control) did not change significantly (p=0.6)
- Convergent reserves improved significantly (p=0.004)
- Mean NPC improved from 6 to 4 cm (p=0.015)

Evans (2000)

Case study
- 07-97: 10 yr old boy with suspected SpLD
 - Reading: blurs, changes size, doubles.
 - Sore & tired eyes, 2 headaches a month
 - Convergence insufficiency
 - Given eye exercises
- 08-97: exercises done, "easy"
 - No blurring or doubling now, no headaches
 - Convergence & convergent fusional reserves improved
- 03-98: no symptoms
 - Reading and maths now average. Spelling still slightly behind, not a problem
 - Clinical tests all normal

Handout from www.bruce-evans.co.uk

Case study
- 09-97: 12 yr old girl with suspected SpLD
 - Reading: hard to focus & eyes water
 - Decompensated exophoria at near
 - Given IFS exercises
- 03-98: motivation poor, exercises not done
 - Findings similar to above
 - Given spectacles (+ve add) to correct esophoria
- 07-98: glasses used in class & reading
 - “Glasses make eyes work harder so less blurring”
 - Heterophoria compensated when glasses worn
 - Still SpLD, but reading less strained
 - Prescription reduced over next 2 yrs to nil

Accommodative amplitude
- E.g., RAF rule
 - read smallest line they can see
 - move target in and watch for saccades to make sure they are accommodating on the target
 - at first blur, move back until clear
 - end-point is halfway between blur and clear points
 - 1 D/s
 - Can also test with negative lenses

Accommodative facility
- tested by flip lenses
 - +2.00D/-2.00D
 - Use letter or word target
 - can monitor suppression with vertical OXO
 - should be clear, single, both Norius strips present
 - Also available in other powers
 - Norms will be different
Accommodative facility

- Norms:
 - typical pre-presbyopic patients consulting an optometrist
 - 7.5 cycles per minute +/- SD 4.5 (Zellers et al., 1984)
 - NB can also be measured by alternating fixation from near to far

Accommodative lag (MEM)

- measured by MEM retinoscopy
- px binocularly fixates target on retinoscope at normal reading distance
- practitioner monocularly rapidly interposes lenses to neutralise reflex
- lenses should only be present for 0.5 second

Accommodative lag (MEM)

- Monocular estimate method (MEM)
 - norm is small with-movement neutralised by low sphere +0.25 to +0.75D
 - mean +/- 1 SD quoted as plano to +0.75
 - If negative lenses required then accommodative spasm

Management of accommodative anomalies

- Look for plus (cyclo)
- Treatment approaches are refractive or eye exercises
- combined accommodative & convergence insufficiency is difficult to treat
 - Sometimes responds to exercises, sometimes needs plus lenses with base in prism

PLAN

- Introduction
- Symptoms
- Basic optometry
- Binocular vision
- Accommodation
- Pattern glare

Representation of colour in macaque area V2

- Used optical recording & confirmed with electrode recording
- Identified “colour-preferring” modules
- Did not overlap with “orientation-preferring modules”
- Each contour illustrates the cortical region giving the maximal response to each tested colour
 - But different colours produce different response magnitudes
Pattern glare

- High prevalence in:
 - Sensory visual stress
 - Migraine
 - Photosensitive epilepsy
 - Autism

Pattern glare test

- Background:
 - Wilkins et al. (1984)
 - Evans et al. (1994)
 - Conlon et al. (2001)
- Pattern 1 (coarse) is control
- Pattern 2 (medium) should maximally elicit pattern glare
 - Neurological origin
- Pattern 3 (fine) is another control
 - Optical rather than neurological
 - People with low visual discomfort may get more illusions with 3 than with 2

Stevenson & Evans Study 1 results: norms

- Is there a gender effect?
 - Removed people with frequent headaches
 - Matched for age
 - 33 females & 34 males
 - Did not differ significantly for each grating or 3-12cpd

Stevenson & Evans Study 1 results: age

- Gender matched 38 oldest with 38 youngest participants
- Similar prevalence of migraine in both groups
- Groups differ sig. at 3cpd and 12cpd, but not at 3-12
Stevenson & Evans Study 3 results: migraine

- 30 new participants:
 - Medical diagnosis of migraine
 - Age- and gender-matched to study 1
- Difference between groups for each grating not statistically significant
- More pattern glare in migraine group at mid-SF relative to high-SF (p=0.041)
- If mid-high>1 is abnormal:
 - 17% of migraine
 - 1.7% of controls

Stevenson & Evans: conclusions

- Norms:
 - For medium grating, 95% of typical optometric population have score less than 4
 - For medium-high, 95% score less than 2
- Pattern glare is similar in males & females
- Pattern glare decreases with age
- Pattern glare is higher than usual in migraine, and the medium-high measure best correlates with migraine
- The test seems useful for:
 - Measuring pattern glare in clinical practice
 - Indicating who may benefit from coloured filters

Differential diagnosis in the consulting room: what to do if the patient has BI/AI & MISVIS?

- Listen to the symptoms (if you hear hoofs...)
- Are the problems only with text?
- Are there pathologic symptoms like “rivers”?
- Look at the signs
- Is any BV anomaly motor or sensory in origin?
- Is there pattern glare?
- 55% of patients receiving gold standard vision therapy are still symptomatic after 12 weeks of treatment
- Scheiman et al (2005)
- Investigate different interventions on text:
 - Coloured filters
 - Spheres
 - Prisms
 - Occlusion

CONCLUSIONS

- People with RD need an eye exam
- The exam should be more comprehensive than a normal eye exam, including:
 - Detailed symptomatology
 - Extra binocular vision tests
 - Extra accommodative tests
 - Testing for sensory visual stress
- Most patients will be OK
- BUT some will need treatment